
research papers

284 Xu and Hauptman � Estimation of jEj values Acta Cryst. (2000). A56, 284±287

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 4 October 1999

Accepted 14 February 2000

# 2000 International Union of Crystallography

Printed in Great Britain ± all rights reserved

On the extrapolation of the magnitudes |E| of the
normalized structure factors E

Hongliang Xu* and Herbert A. Hauptman

Hauptman±Woodward Medical Research Institute, 73 High Street, Buffalo, NY 14203, USA.

Correspondence e-mail: xu@hwi.buffalo.edu

For each ®xed reciprocal-lattice vector H, the correlation coef®cient, �H, of the

pair �jEKj; jEHÿKj�, where the magnitudes jEKj and jEHÿKj are presumed to be

known, is itself positively correlated with jEHj. Thus, the correlation coef®cients

�H serve to mediate the transfer of information from one region of reciprocal

space to another. In particular, the calculated values of the correlation

coef®cients �H lead to estimates of the unknown magnitudes jEHj, even when

the latter lie outside the sphere of the experimentally observed jEjs
(extrapolation). The applications show that the procedure described here to

carry out this extrapolation is superior to existing methods.

1. Introduction

It is well known that the inability to collect diffraction data to

suf®ciently high resolution often limits the effectiveness of

phase determination by direct methods. It has been demon-

strated in direct-methods applications that the adverse effects

of missing data may be magni®ed because of the number of

triplet invariant relationships that become unavailable for use

(Xu et al., 2000a,b). It is therefore a matter of some import-

ance to devise methods that will exploit measured magnitudes

jEj to estimate the values of other magnitudes jEj not initially

obtainable experimentally. In the present paper, a procedure

is described that realizes this goal.

For noncentric structures, the distribution for the normal-

ized structure factor is de®ned by

P�jEj� � 2jEj exp�ÿjEj2�; �1�

and the expected value of jEj is

hjEji � R1
0

jEjP�jEj� djEj � �1=2=2: �2�

This is a crude estimate of the values of nonmeasured inten-

sities, and this relationship is almost useless for most practical

purposes. Van der Putten et al. (1982) proposed probabilistic

expressions for estimating jEHj using all the most reliable

quartets in which H is a cross term. David (1987) suggested an

algebraic formula

hjFHj2i �
P
K

jFKj2jFHÿKj2; �3�

based on the fact that the Patterson function P�u� and its

square P2�u� are positive functions. Following up on this

earlier work, more recently Cascarano et al. (1991) presented

an improved formula:

hjEHji � �1=2=2�1� L�2N�ÿ1h�jEKj2 ÿ 1��jEHÿKj2 ÿ 1�i�;
�4�

based on the joint probability distribution of three normalized

structure factors (Hauptman & Karle, 1953; Cochran, 1955),

where L is a constant determined by the requirement that the

average of the jEHj2s must be unity. While equation (4) proved

to be superior to the earlier attempts, its success was still

limited and the goal of reliably estimating jEjs, given the

values of measured jEjs, remained elusive. As we shall show in

the applications, the formulation given here, while still less

than perfect, is nevertheless superior to equation (4).

In this paper, we outline a different mathematical approach

that yields estimates of the values of some nonmeasured

diffraction amplitudes on the basis of suitable correlation

coef®cients. We ®rst demonstrate that the values of nonmea-

sured jEHjs are correlated with the values of the correlation

coef®cients between jEKj and jEHÿKj (both presumed to be

measured). We then derive an empirical formula (dependent

on the correlation coef®cient and sin �=� only) to assign a

value to jEHj. Experimental tests on several data sets show a

signi®cant improvement over existing methods.

2. Correlation coefficient

Let x and y be any two random variables with means

�x � m�x� and �y � m�y� and positive variances

�2
x � m��xÿ �x�2� and �2

y � m��yÿ �y�2�. The correlation

coef®cient between x; y is de®ned by

��x; y� � cov�x; y�=�x�y; �5�

where

cov�x; y� � m��xÿ �x��yÿ �y�� �6�



is the covariance of x and y. If ��x; y� � 0, we say that x and y

are uncorrelated (to distinguish from independent). Clearly,

this correlation coef®cient is independent of the origins and

units of measurements, that is, for any constant a1, a2, b1, b2,

with a1 > 0, a2 > 0, we have

��a1x� b1; a2y� b2� � ��x; y�: �7�
The correlation coef®cient provides a measure of how well

one may predict the value of one of the random variables on

the basis of the observed value of the other. It is well known

that

ÿ1 � ��x; y� � 1: �8�
Further, �2�x; y� � 1 if and only if

Probability�y � ax� b� � 1: �9�
From (9), it follows that if the correlation coef®cient equals 1

or ÿ1 then prediction is perfect: to a given value of one of the

random variables, there is one and only one value that the

other random variable can assume.

If H is an arbitrary reciprocal-lattice vector, then the

normalized structure factor EH is de®ned by

EH � jEHj exp�i'H� � Nÿ1=2
PN
j�1

exp�2�iH � rj�; �10�

where N is the number of atoms, assumed to be identical, in

the unit cell and rj is the position vector of the atom labeled j.

It is assumed that the atomic position vectors rj are the

primitive random variables, uniformly and independently

distributed in the asymmetric unit.

For each ®xed reciprocal-lattice vector H outside a certain

limiting sphere, let K range over all reciprocal-lattice vectors

within the limiting sphere such that jEKj and jEHÿKj are

measured. Then, jEKj and jEHÿKj, as functions of the random

variables rj, are themselves random variables. Let x � jEKj
and y � jEHÿKj, for each ®xed H, the correlation coef®cient

�H � ��jEKj; jEHÿKj�, in view of equation (5), becomes

�H �
P

K�jEKj ÿ jEKj��jEHÿKj ÿ jEHÿKj�
�PK�jEKj ÿ jEKj�2

P
K�jEHÿKj ÿ jEHÿKj�2�1=2

�11�

� jEKjjEHÿKj ÿ jEKj jEHÿKj
�jEKj2 ÿ jEKj2�1=2�jEHÿKj2 ÿ jEHÿKj2�1=2

; �12�

where jEKj is the average value of the jEKjs. In view of the

known joint probability distribution of the pair �jEKj; jEHÿKj�
(Hauptman, 1972), one anticipates that �H and jEHj are

positively correlated, i.e. the probability is high that jEHj will

be large when �H is large and jEHj will be small when �H is

small. Therefore, the value of �H can be used to predict the

value of jEHj.

3. Determination of an empirical formula

If data up to sin �=� � s are available, we shall try to estimate

the magnitudes jEj in the shell �s; s0�, where s0> s. For each

reciprocal-lattice vector H with s< sin �=� � s0, the correla-

tion coef®cient �H � ��jEKj; jEHÿKj� can be calculated using

(12). Of course, the value of the correlation coef®cient

depends on the resolution, which determines the number of

contributors on the right-hand side of (12). In order to reduce

the effects of resolution, we de®ne the so-called `normalized

correlation coef®cient �̂H': If the minimum and maximum

values of the correlation coef®cients in the spherical shell

�s; s0� are denoted by �min and �max, respectively, then the

normalized correlation coef®cient �̂H is de®ned by

�̂H � �2�H ÿ �min ÿ �max�=��max ÿ �min�: �13�
Since the smallest value of �̂H occurs when �H � �min, in

which case �̂H � ÿ1, and the largest value of �̂H occurs

when �H � �max, in which case �̂H � 1, it follows that

ÿ1 � �̂H � 1: �14�
Furthermore, it is clear that the relationship between �H and

�̂H is order preserving in the sense that �H1
< �H2

implies

�̂H1
< �̂H2

.

We describe our procedure using error-free data for alpha-1

peptide (508 non-H atoms, space group P1). There are 52410

re¯ections available to s � 0:685 AÊ ÿ1 and 7018 re¯ections in

the sin �=� range �0:685; 0:714 AÊ ÿ1�. All 7018 correlation

coef®cients are calculated by (12) and normalized by (13). The

�̂H are then sorted in decreasing order and divided into 140

groups with 50 re¯ections in each group. For each of these 140

groups, N, the percentage of re¯ections with jEj � 1:0 is

calculated and �̂ and jEj, the average values of �̂Hs and jEHjs,
respectively, in each of these 140 groups, are also calculated.

The 140 pairs ��̂;N� are plotted in Fig. 1 and the 140 pairs

��̂; jEj� are plotted in Fig. 2. It is observed from Fig. 1 that the

percentage of jEj � 1:0 in each group decreases as �̂
decreases. Again, from Fig. 2, it is clear that jEj, the average

value of jEj in each group, decreases as �̂ decreases. Note, in

particular, for the ®rst group, where �̂ � 0:737, 94% of jEjs
are greater than 1.0 (Fig. 1) and jEj � 1:805 (Fig. 2). For the
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Figure 1
Percentage of jEj � 1:0 as a discrete function of �̂, the average value of
the normalized correlation coef®cient �̂ within 140 groups each consisting
of 50 jEjs.
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last group, on the other hand, where �̂ � ÿ0:796, only 14% of

jEjs are greater than 1.0 (Fig. 1) and jEj � 0:693 (Fig. 2). An

empirical function of the form

jEcalj � ��exp���̂� ÿ 1� � ; �15�
with � � 0:28, � � 2:1 and  � 0:90, is then determined by

least squares using the data shown in Fig. 2. The same

procedure has been repeated using error-free data for alpha-1

peptide in the different s � sin �=� ranges, and the corre-

sponding values of �, � and  are obtained and listed in

Table 1.

In order to study the effects of space groups on the values of

�, � and , we repeated the same procedure using error-free

data sets for crambin (327 non-H atoms, space group P21) and

gramicidin A (317 non-H atoms, space group P212121). The

corresponding values of �, � and  are also listed in Table 1. It

is clear that the values of �, � and  are resolution-dependent

and structure-dependent, but the space groups have little

impact on the values of �, � and  (at least for space groups P1,

P21 and P212121). So, we can seek an empirical function of the

form (15) and assume that �, � and  are resolution-depen-

dent only. For each of �, � and , we apply the least-squares

method on the three data sets listed in Table 1 and obtain

� � 0:16� exp�ÿ1=s2�; �16�
� � 1:68� 3:50 exp�ÿ1=s2�; �17�
 � 0:77� exp�ÿ1=s2�: �18�

The empirical formula (15) is now employed to estimate the

values of nonmeasured jEj, where �̂ is de®ned by (13), and �,

� and  are de®ned by (16)±(18). Several issues, such as the

validation of the formula and the effects of real data etc., are

addressed in the next section.

4. Results and conclusions

The general effectiveness of the method may be assessed by

the values of the residual

RES �P
H

��jEobsj ÿ jEcalj
���P

H

jEobsj: �19�

The notations RESP and RESC denote the residuals corre-

sponding to equations (4) and (15), respectively, which in turn

are based on the probabilistic approach and the correlation-

coef®cient method described here.

The residuals RESP and RESC using error-free data sets

for alpha-1 peptide, crambin and gramicidin A are listed in

Table 2. The estimates based on the correlation coef®cient are

in all cases better than the estimates based on the probabil-

istic formula (4). The effectiveness of equation (15) is slightly

reduced with real data. For example, the jEj values of 5705

re¯ections in the sin �=� range 0.568±0.588 AÊ ÿ1 have been

estimated by equation (15) using both real data and error-free

data as prior information and RESC � 0:426 for real data,

RESC � 0:414 for error-free data.

As an application of (15), we have used experimental data

sets from 12 structures crystallizing in space groups P1, P21

Table 1
Experimental values of �, � and  using error-free data sets for alpha-1 peptide, crambin and gramicidin A at several sin �=� ranges.

Alpha-1 Crambin Gramicidin A

sin �=� �AÊ ÿ1� � �  � �  � � 

(0.685, 0.714) 0.280 2.10 0.900 0.283 2.08 0.950 0.270 2.05 0.930
(0.641, 0.667) 0.245 2.00 0.853 0.242 2.03 0.873 0.230 1.94 0.827
(0.602, 0.625) 0.226 1.90 0.837 0.221 1.97 0.826 0.195 1.85 0.815
(0.568, 0.588) 0.198 1.85 0.828 0.191 1.83 0.810 0.186 1.80 0.810
(0.538, 0.556) 0.186 1.80 0.813 0.182 1.80 0.800 0.180 1.77 0.807
(0.510, 0.526) 0.179 1.75 0.807 0.178 1.77 0.793 0.175 1.68 0.800

Figure 2
Average value of jEj as a discrete function of �̂, the average value of the
normalized correlation coef®cient �̂ within 140 groups each consisting of
50 jEjs.

Table 2
Comparison of the residuals, RESP and RESC using error-free data sets
for alpha-1 peptide, crambin and gramicidin A.

Alpha-1 Crambin Gramicidin A

sin �=� �AÊ ÿ1� RESP RESC RESP RESC RESP RESC

(0.685, 0.714) 0.459 0.392 0.448 0.409 0.490 0.423
(0.641, 0.667) 0.500 0.396 0.528 0.410 0.528 0.438
(0.602, 0.625) 0.532 0.412 0.552 0.414 0.533 0.432
(0.568, 0.588) 0.528 0.414 0.533 0.417 0.514 0.430
(0.538, 0.556) 0.538 0.409 0.535 0.428 0.502 0.460
(0.510, 0.526) 0.497 0.412 0.533 0.424 0.483 0.430



and P212121. These are shown in Table 3. For each test

structure, the range of sin �=� and the residuals, RESP and

RESC, are given in Table 4. Analysis of Table 4 shows that the

correlation-coef®cient estimation [equation (15)] is always

better than the probabilistic estimate [equation (4)]. Clearly,

equation (15) constitutes a signi®cant improvement over the

existing methods. It is worth pointing out that (15), together

with (16)±(18), is obtained empirically based on the high-

resolution data. For the low-resolution data, the correlation

coef®cient estimation, like all other existing methods, is no

longer applicable.
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Table 3
Structure name, number of atoms, space group and resolution for the test structures.

Atoms Space group Resolution (AÊ ) Reference

Emerimycin 74 P1 0.91 Marshall et al. (1990)
Isoleucinomycin 84 P212121 0.94 Pletnev et al. (1980)
Enkephalin analog 96 P1 0.83 Krstenansky (unpublished)
Ternatin 104 P212121 0.94 Miller et al. (1993)
Hexaisoleucinomycin 113 P212121 1.00 Pletnev et al. (1992)
Gramicidin A 317 P212121 0.86 Langs (1988)
Crambin 327 P21 0.83 Hendrickson & Teeter (1981)
Rubredoxin 395 P21 1.00 Dauter et al. (1992)
Vancomycin 404 P1 0.97 Loll et al. (1998)
Alpha-1 peptide 408 P1 0.90 Prive et al. (1999)
Scorpion toxin II 508 P212121 0.96 Smith et al. (1997)
Triclinic lysozyme 1001 P1 0.85 Deacon et al. (1998)

Table 4
Comparison of the residuals, RESP and RESC , using real data.

sin �=� �AÊ ÿ1� RESP RESC

Emerimycin (0.526, 0.546) 0.469 0.395
Isoleucinomycin (0.510, 0.532) 0.462 0.358
Enkephalin analog (0.556, 0.588) 0.393 0.324
Ternatin (0.516, 0.533) 0.562 0.475
Hexaisoleucinomycin (0.472, 0.500) 0.467 0.315
Gramicidin A (0.556, 0.580) 0.434 0.367
Crambin (0.556, 0.603) 0.504 0.361
Rubredoxin (0.476, 0.500) 0.483 0.355
Vancomycin (0.513, 0.532) 0.445 0.417
Alpha-1 peptide (0.556, 0.575) 0.552 0.426
Scorpion toxin II (0.500, 0.518) 0.419 0.332
Triclinic lysozyme (0.556, 0.588) 0.489 0.414


